Copied to
clipboard

G = C2.C82order 128 = 27

1st central stem extension by C2 of C82

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2.1C82, C42.66Q8, C42.452D4, C23.39C42, (C2×C8)⋊3C8, C4.21(C4⋊C8), C2.1(C8⋊C8), C22.11(C4×C8), (C22×C8).21C4, C4.27(C22⋊C8), (C2×C4).85M4(2), C22.10(C8⋊C4), (C2×C42).1141C22, C2.1(C22.7C42), C22.14(C2.C42), (C2×C4×C8).1C2, (C2×C4).91(C2×C8), (C2×C4).154(C4⋊C4), (C22×C4).500(C2×C4), (C2×C4).367(C22⋊C4), SmallGroup(128,5)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2.C82
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C2.C82
C1C2 — C2.C82
C1C2×C42 — C2.C82
C1C22C22C2×C42 — C2.C82

Generators and relations for C2.C82
 G = < a,b,c | a2=b8=c8=1, cbc-1=ab=ba, ac=ca >

Subgroups: 136 in 106 conjugacy classes, 76 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C23, C42, C42, C2×C8, C2×C8, C22×C4, C4×C8, C2×C42, C22×C8, C2×C4×C8, C2.C82
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C2.C42, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C82, C8⋊C8, C22.7C42, C2.C82

Smallest permutation representation of C2.C82
Regular action on 128 points
Generators in S128
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 126)(10 127)(11 128)(12 121)(13 122)(14 123)(15 124)(16 125)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 25)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 97)(48 98)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(105 113)(106 114)(107 115)(108 116)(109 117)(110 118)(111 119)(112 120)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 66 55 84 31 121 105 43)(2 75 56 93 32 13 106 102)(3 68 49 86 25 123 107 45)(4 77 50 95 26 15 108 104)(5 70 51 88 27 125 109 47)(6 79 52 89 28 9 110 98)(7 72 53 82 29 127 111 41)(8 73 54 91 30 11 112 100)(10 119 99 33 80 61 90 20)(12 113 101 35 74 63 92 22)(14 115 103 37 76 57 94 24)(16 117 97 39 78 59 96 18)(17 124 116 46 38 69 58 87)(19 126 118 48 40 71 60 81)(21 128 120 42 34 65 62 83)(23 122 114 44 36 67 64 85)

G:=sub<Sym(128)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,66,55,84,31,121,105,43)(2,75,56,93,32,13,106,102)(3,68,49,86,25,123,107,45)(4,77,50,95,26,15,108,104)(5,70,51,88,27,125,109,47)(6,79,52,89,28,9,110,98)(7,72,53,82,29,127,111,41)(8,73,54,91,30,11,112,100)(10,119,99,33,80,61,90,20)(12,113,101,35,74,63,92,22)(14,115,103,37,76,57,94,24)(16,117,97,39,78,59,96,18)(17,124,116,46,38,69,58,87)(19,126,118,48,40,71,60,81)(21,128,120,42,34,65,62,83)(23,122,114,44,36,67,64,85)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,66,55,84,31,121,105,43)(2,75,56,93,32,13,106,102)(3,68,49,86,25,123,107,45)(4,77,50,95,26,15,108,104)(5,70,51,88,27,125,109,47)(6,79,52,89,28,9,110,98)(7,72,53,82,29,127,111,41)(8,73,54,91,30,11,112,100)(10,119,99,33,80,61,90,20)(12,113,101,35,74,63,92,22)(14,115,103,37,76,57,94,24)(16,117,97,39,78,59,96,18)(17,124,116,46,38,69,58,87)(19,126,118,48,40,71,60,81)(21,128,120,42,34,65,62,83)(23,122,114,44,36,67,64,85) );

G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,126),(10,127),(11,128),(12,121),(13,122),(14,123),(15,124),(16,125),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,25),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,97),(48,98),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(105,113),(106,114),(107,115),(108,116),(109,117),(110,118),(111,119),(112,120)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,66,55,84,31,121,105,43),(2,75,56,93,32,13,106,102),(3,68,49,86,25,123,107,45),(4,77,50,95,26,15,108,104),(5,70,51,88,27,125,109,47),(6,79,52,89,28,9,110,98),(7,72,53,82,29,127,111,41),(8,73,54,91,30,11,112,100),(10,119,99,33,80,61,90,20),(12,113,101,35,74,63,92,22),(14,115,103,37,76,57,94,24),(16,117,97,39,78,59,96,18),(17,124,116,46,38,69,58,87),(19,126,118,48,40,71,60,81),(21,128,120,42,34,65,62,83),(23,122,114,44,36,67,64,85)]])

80 conjugacy classes

class 1 2A···2G4A···4X8A···8AV
order12···24···48···8
size11···11···12···2

80 irreducible representations

dim1111222
type+++-
imageC1C2C4C8D4Q8M4(2)
kernelC2.C82C2×C4×C8C22×C8C2×C8C42C42C2×C4
# reps1312483112

Matrix representation of C2.C82 in GL4(𝔽17) generated by

1000
0100
00160
00016
,
8000
0800
00101
0017
,
8000
0100
0001
00160
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[8,0,0,0,0,8,0,0,0,0,10,1,0,0,1,7],[8,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0] >;

C2.C82 in GAP, Magma, Sage, TeX

C_2.C_8^2
% in TeX

G:=Group("C2.C8^2");
// GroupNames label

G:=SmallGroup(128,5);
// by ID

G=gap.SmallGroup(128,5);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,136,172]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^8=1,c*b*c^-1=a*b=b*a,a*c=c*a>;
// generators/relations

׿
×
𝔽